Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Trop Med Infect Dis ; 8(4)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2303165

ABSTRACT

The 2018 United Nations High-Level Meeting on Tuberculosis (UNHLM) set targets for case detection and TB preventive treatment (TPT) by 2022. However, by the start of 2022, about 13.7 million TB patients still needed to be detected and treated, and 21.8 million household contacts needed to be given TPT globally. To inform future target setting, we examined how the 2018 UNHLM targets could have been achieved using WHO-recommended interventions for TB detection and TPT in 33 high-TB burden countries in the final year of the period covered by the UNHLM targets. We used OneHealth-TIME model outputs combined with the unit cost of interventions to derive the total costs of health services. Our model estimated that, in order to achieve UNHLM targets, >45 million people attending health facilities with symptoms would have needed to be evaluated for TB. An additional 23.1 million people with HIV, 19.4 million household TB contacts, and 303 million individuals from high-risk groups would have required systematic screening for TB. The estimated total costs amounted to ~USD 6.7 billion, of which ~15% was required for passive case finding, ~10% for screening people with HIV, ~4% for screening household contacts, ~65% for screening other risk groups, and ~6% for providing TPT to household contacts. Significant mobilization of additional domestic and international investments in TB healthcare services will be needed to reach such targets in the future.

3.
Lancet Glob Health ; 11(4): e546-e555, 2023 04.
Article in English | MEDLINE | ID: covidwho-2255290

ABSTRACT

BACKGROUND: Tuberculosis is a leading infectious cause of death worldwide. Novel vaccines will be required to reach global targets and reverse setbacks resulting from the COVID-19 pandemic. We estimated the impact of novel tuberculosis vaccines in low-income and middle-income countries (LMICs) in several delivery scenarios. METHODS: We calibrated a tuberculosis model to 105 LMICs (accounting for 93% of global incidence). Vaccine scenarios were implemented as the base-case (routine vaccination of those aged 9 years and one-off vaccination for those aged 10 years and older, with country-specific introduction between 2028 and 2047, and 5-year scale-up to target coverage); accelerated scale-up similar to the base-case, but with all countries introducing vaccines in 2025, with instant scale-up; and routine-only (similar to the base-case, but including routine vaccination only). Vaccines were assumed to protect against disease for 10 years, with 50% efficacy. FINDINGS: The base-case scenario would prevent 44·0 million (95% uncertainty range 37·2-51·6) tuberculosis cases and 5·0 million (4·6-5·4) tuberculosis deaths before 2050, compared with equivalent estimates of cases and deaths that would be predicted to occur before 2050 with no new vaccine introduction (the baseline scenario). The accelerated scale-up scenario would prevent 65·5 million (55·6-76·0) cases and 7·9 million (7·3-8·5) deaths before 2050, relative to baseline. The routine-only scenario would prevent 8·8 million (95% uncertainty range 7·6-10·1) cases and 1·1 million (0·9-1·2) deaths before 2050, relative to baseline. INTERPRETATION: Our results suggest novel tuberculosis vaccines could have substantial impact, which will vary depending on delivery strategy. Including a one-off vaccination campaign will be crucial for rapid impact. Accelerated introduction-at a pace similar to that seen for COVID-19 vaccines-would increase the number of lives saved before 2050 by around 60%. Investment is required to support vaccine development, manufacturing, prompt introduction, and scale-up. FUNDING: WHO (2020/985800-0). TRANSLATIONS: For the French, Spanish, Italian and Dutch translations of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Tuberculosis Vaccines , Tuberculosis , Humans , Developing Countries , COVID-19 Vaccines , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Tuberculosis/epidemiology , Tuberculosis/prevention & control
4.
PLoS Med ; 20(1): e1004155, 2023 01.
Article in English | MEDLINE | ID: covidwho-2247265

ABSTRACT

BACKGROUND: Tuberculosis (TB) is preventable and curable but eliminating it has proven challenging. Safe and effective TB vaccines that can rapidly reduce disease burden are essential for achieving TB elimination. We assessed future costs, cost-savings, and cost-effectiveness of introducing novel TB vaccines in low- and middle-income countries (LMICs) for a range of product characteristics and delivery strategies. METHODS AND FINDINGS: We developed a system of epidemiological and economic models, calibrated to demographic, epidemiological, and health service data in 105 LMICs. For each country, we assessed the likely future course of TB-related outcomes under several vaccine introduction scenarios, compared to a "no-new-vaccine" counterfactual. Vaccine scenarios considered 2 vaccine product profiles (1 targeted at infants, 1 at adolescents/adults), both assumed to prevent progression to active TB. Key economic inputs were derived from the Global Health Cost Consortium, World Health Organization (WHO) patient cost surveys, and the published literature. We estimated the incremental impact of vaccine introduction for a range of health and economic outcomes. In the base-case, we assumed a vaccine price of $4.60 and used a 1× per-capita gross domestic product (GDP) cost-effectiveness threshold (both varied in sensitivity analyses). Vaccine introduction was estimated to require substantial near-term resources, offset by future cost-savings from averted TB burden. From a health system perspective, adolescent/adult vaccination was cost-effective in 64 of 105 LMICs. From a societal perspective (including productivity gains and averted patient costs), adolescent/adult vaccination was projected to be cost-effective in 73 of 105 LMICs and cost-saving in 58 of 105 LMICs, including 96% of countries with higher TB burden. When considering the monetized value of health gains, we estimated that introduction of an adolescent/adult vaccine could produce $283 to 474 billion in economic benefits by 2050. Limited data availability required assumptions and extrapolations that may omit important country-level heterogeneity in epidemiology and costs. CONCLUSIONS: TB vaccination would be highly impactful and cost-effective in most LMICs. Further efforts are needed for future development, adoption, and implementation of novel TB vaccines.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Infant , Adult , Adolescent , Humans , Cost-Benefit Analysis , Developing Countries , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL